A Comparison of Heteroscedasticity Robust Standard Errors and Nonparametric Generalized Least Squares

نویسندگان

  • MICHAEL O’HARA
  • CHRISTOPHER F. PARMETER
چکیده

This paper presents a Monte Carlo comparison of several versions of heteroscedasticity robust standard errors (HRSEs) to a nonparametric feasible generalized least squares procedure (NPGLS). Results suggest that the NPGLS procedure provides an improvement in efficiency ranging from 3% to 12% or more in reasonable sample sizes using simple functional forms for heteroscedasticity. This results in tighter confidence intervals and more precise estimation and inference. Thus, the NPGLS estimator provides nearly identically sized hypothesis tests, with a significant gain in power. JEL Classification: C13 (Estimation), C14 (Semiparametric and nonparametric methods)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Heteroscedasticity in Robust Regression

This work studies the phenomenon of heteroscedasticity and its consequences for various methods of linear regression, including the least squares, least weighted squares and regression quantiles. We focus on hypothesis tests for these regression methods. The new approach consists in deriving asymptotic heteroscedasticity tests for robust regression, which are asymptotically equivalent to standa...

متن کامل

Heteroskedastic linear regression: steps towards adaptivity, efficiency, and robustness

In linear regression with heteroscedastic errors, the Generalized Least Squares (GLS) estimator is optimal, i.e., it is the Best Linear Unbiased Estimator (BLUE). The Ordinary Least Squares (OLS) estimator is suboptimal but still valid, i.e., unbiased and consistent. Halbert White, in his seminal paper (Econometrica, 1980) used the OLS residuals in order to obtain an estimate of the standard er...

متن کامل

Adaptive Estimation of Heteroscedastic Money Demand Model of Pakistan

For the problem of estimation of Money demand model of Pakistan, money supply (M1) shows heteroscedasticity of the unknown form. For estimation of such model we compare two adaptive estimators with ordinary least squares estimator and show the attractive performance of the adaptive estimators, namely, nonparametric kernel estimator and nearest neighbour regression estimator. These comparisons a...

متن کامل

Robust Regression Methods: Achieving Small Standard Errors When There Is Heteroscedasticity

A serious practical problem with the ordinary least squares regression estimator is that it can have a relatively large standard error when the error term is heteroscedastic, even under normality. In practical terms, power can be poor relative to other regression estimators that might be used. This article illustrates the problem and summarizes strategies for dealing with it. Included are new r...

متن کامل

Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies

Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011